Search results

Search for "emulsion polymerization" in Full Text gives 12 result(s) in Beilstein Journal of Nanotechnology.

Solvent-induced assembly of mono- and divalent silica nanoparticles

  • Bin Liu,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2023, 14, 52–60, doi:10.3762/bjnano.14.6

Graphical Abstract
  • to synthesize 1-PSN with controlled patch size. First, silica/PS monopods consisting of a central silica core attached to one PS nodule (Figure 2a) have been prepared by seeded-growth emulsion polymerization of styrene, as reported elsewhere [32] (see experimental details). The silica core of the
  • silica/PS monopods and bipods In a manner similar to the already reported procedure [32], monopods consisting of a central silica core attached to one PS nodule have been prepared by seeded-growth emulsion polymerization of styrene. Briefly, silica nanoparticles with an average diameter of 44 ± 2 nm were
  • corresponded to a nominal grafting surface density of 0.7 funct./nm2. Then, MMS-functionalized silica NPs (1.8 × 1016 part/L) were used as seeds for the seed-growth emulsion polymerization of styrene (100 g/L) stabilized by a mixture (3 g/L) of Symperonic® NP30 and SDS (5 wt %) and initiated by 1.3 mL of
PDF
Album
Full Research Paper
Published 06 Jan 2023

Porous silver-coated pNIPAM-co-AAc hydrogel nanocapsules

  • William W. Bryan,
  • Riddhiman Medhi,
  • Maria D. Marquez,
  • Supparesk Rittikulsittichai,
  • Michael Tran and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2019, 10, 1973–1982, doi:10.3762/bjnano.10.194

Graphical Abstract
  • describes the preparation and characterization of a new type of core–shell nanoparticle in which the structure consists of a hydrogel core encapsulated within a porous silver shell. The thermo-responsive hydrogel cores were prepared by surfactant-free emulsion polymerization of a selected mixture of N
  • encapsulation of thermo-responsive pNIPAM-co-AAc hydrogel cores within porous silver nanoshells, and for the purpose of comparison, within a complete nonporous silver nanoshell. We adopt a simple surfactant-free emulsion polymerization (SFEP) technique to grow the initial hydrogel core templates [74][75][76
  • -growth method and surfactant-free emulsion polymerization, we demonstrated a reliable synthesis of silver nanocapsules encapsulating thermo-responsive pNIPAM-co-AAc hydrogel cores. The 800 nm silver nanocapsules with a capsule thickness of ≈50 nm were characterized by SEM, TEM, and UV–vis spectroscopy
PDF
Album
Full Research Paper
Published 04 Oct 2019

Pull-off and friction forces of micropatterned elastomers on soft substrates: the effects of pattern length scale and stiffness

  • Peter van Assenbergh,
  • Marike Fokker,
  • Julian Langowski,
  • Jan van Esch,
  • Marleen Kamperman and
  • Dimitra Dodou

Beilstein J. Nanotechnol. 2019, 10, 79–94, doi:10.3762/bjnano.10.8

Graphical Abstract
  • particles: Carboxylated polystyrene (PS) particles with a sub-microscale diameter were synthesized in a single-step surfactant-free emulsion polymerization, according to Appel et al. [42]. The particles were washed by centrifugation three times in ethanol and three times in water. The particles were
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Colloidal chemistry with patchy silica nanoparticles

  • Pierre-Etienne Rouet,
  • Cyril Chomette,
  • Laurent Adumeau,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2018, 9, 2989–2998, doi:10.3762/bjnano.9.278

Graphical Abstract
  • Ravensteijn has also reported asymmetric dumbbell-like particles, i.e., with two nodules of different chemical compositions, obtained through a phase separation process during the styrene emulsion polymerization seeded with cross-linked polystyrene (PS) particles coated with a thin layer of poly(vinylbenzyl
  • of a central silica core and two or four PS nodules were prepared by the seeded-growth emulsion polymerization of styrene, according to an already published procedure [24]. The regrowth of the silica cores of the multipods, the subsequent dissolution of the PS nodules to create dimpled particles and
  • by two or four PS satellite nodules, by seeded-growth emulsion polymerization of styrene, according to a procedure we published previously [24]. We used two batches of silica seeds with diameters of 48 and 53 nm, respectively, previously surface-modified with MMS or MPS (0.5 molecules per square
PDF
Album
Full Research Paper
Published 06 Dec 2018

Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles

  • Dafu Wei,
  • Youwei Zhang and
  • Jinping Fu

Beilstein J. Nanotechnol. 2017, 8, 1897–1908, doi:10.3762/bjnano.8.190

Graphical Abstract
  • nanoparticles. Firstly, PAN–PMMA nanoparticles at high concentration and low surfactant content were controllably synthesized by a two-stage azobisisobutyronitrile (AIBN)-initiated semicontinuous emulsion polymerization. The carbon nanospheres were obtained after the PAN core domain was converted into carbon
  • –shell nanoparticles; emulsion polymerization; polyacrylonitrile; Introduction Due to their high specific surface area, chemical inertness, good mechanical stability and unique electrical properties, carbon nanospheres have numerous potential applications in nanocomposites [1], gas storage [2], lithium
  • efficiency of micellization make the method unappealing to the industrial community. Emulsion polymerization is a facile and efficient route to synthesize polymer particles. By combining the emulsion polymerization with the pyrolysis, the production efficiency of PAN-based carbon nanospheres can be improved
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2017

Miniemulsion copolymerization of (meth)acrylates in the presence of functionalized multiwalled carbon nanotubes for reinforced coating applications

  • Bertha T. Pérez-Martínez,
  • Lorena Farías-Cepeda,
  • Víctor M. Ovando-Medina,
  • José M. Asua,
  • Lucero Rosales-Marines and
  • Radmila Tomovska

Beilstein J. Nanotechnol. 2017, 8, 1328–1337, doi:10.3762/bjnano.8.134

Graphical Abstract
  • are placed in the interstitial sites between the polymer nanoparticles, which hinders CNT aggregation in the film. Emulsion polymerization is the most frequently used waterborne polymerization process in industry [22][23][24][25][26]. However, especially for hybrid systems that contain an additional
  • grafted onto either the PVP or the surface of MWCNTs, as it has been reported in the emulsion polymerization of styrene initiated with KPS in the presence of MWCNTs [40] and in the emulsion polymerization of MMA/BA with graphene filler [41]. The second reason for such a high gel content may be the H
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2017

Intercalation and structural aspects of macroRAFT agents into MgAl layered double hydroxides

  • Dessislava Kostadinova,
  • Ana Cenacchi Pereira,
  • Muriel Lansalot,
  • Franck D’Agosto,
  • Elodie Bourgeat-Lami,
  • Fabrice Leroux,
  • Christine Taviot-Guého,
  • Sylvian Cadars and
  • Vanessa Prevot

Beilstein J. Nanotechnol. 2016, 7, 2000–2012, doi:10.3762/bjnano.7.191

Graphical Abstract
  • using an emulsion polymerization process [49]. Experimental Magnesium and aluminium nitrate salts, Mg(NO3)2·6H2O and Al(NO3)3·9H2O were of analytical grade (Acros Organics, Merck). Acrylic acid (AA, Aldrich, 99%), n-butyl acrylate (BA, 99%, stabilized, Acros Organics), 1,4-dioxane (Sigma-Aldrich, puriss
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2016

Radiation losses in the microwave Ku band in magneto-electric nanocomposites

  • Talwinder Kaur,
  • Sachin Kumar,
  • Jyoti Sharma and
  • A. K. Srivastava

Beilstein J. Nanotechnol. 2015, 6, 1700–1707, doi:10.3762/bjnano.6.173

Graphical Abstract
  • explained. Further studies revealed that the prepared material is a nanocomposite. FTIR spectra show the presence of expected chemical structures such as C–H bonds in a ring system at 1512 cm−1. Keywords: emulsion polymerization; magneto-electric composite; radiation loss; vector network analyser
  • paper, we have used the versatile citrate precursor method to synthesize La–Co-substituted barium hexaferrite. Lanthanum and cobalt are used as substituents to enhance the magnetic properties of barium hexaferrite and then emulsion polymerization is employed for the synthesis of nanocomposites. The
  • the losses increase at higher frequencies. Conclusion The composite material has been successfully synthesized through emulsion polymerization. The XRD measurements show a crystalline structure and the formation of nanocomposites. FTIR spectra provide evidence for the presence of ferrite particles and
PDF
Album
Full Research Paper
Published 07 Aug 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • nanocomposite material composed of a magnetic silica core and a fluorescent shell by combining two different techniques, namely heterocoagulation and soap-free emulsion polymerization. The N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA)-modified Fe3O4 NPs were prepared by the Massart method and
PDF
Album
Review
Published 24 Feb 2015

Tailoring the ligand shell for the control of cellular uptake and optical properties of nanocrystals

  • Johannes Ostermann,
  • Christian Schmidtke,
  • Christopher Wolter,
  • Jan-Philip Merkl,
  • Hauke Kloust and
  • Horst Weller

Beilstein J. Nanotechnol. 2015, 6, 232–242, doi:10.3762/bjnano.6.22

Graphical Abstract
  • emulsion polymerization has been developed, in which additional monomer like styrene, isoprene and divinylbenzene are added as a cross-linking reagent after the micellar encapsulation and polymerized in the hydrophobic core [26]. The monomers react with the double bonds of the PI forming a covalently
  • coupled dense shell. Figure 5 shows the whole encapsulation process, including the possible cross-linking and seeded emulsion polymerization steps. A very powerful and sensitive tool to test the density of the nanocontainers is fluorescence quenching with small organic molecules or ions to simulate
  • micelles indicating hindered diffusion towards the QD and therefore a denser shell [23]. A strong enhancement of the density could also be observed in the case of QDs stabilized by emulsion polymerization [26]. Finally, the used polymers and ratios between QDs and the polymer have a strong influence on the
PDF
Album
Supp Info
Review
Published 21 Jan 2015

Colloidal lithography for fabricating patterned polymer-brush microstructures

  • Tao Chen,
  • Debby P. Chang,
  • Rainer Jordan and
  • Stefan Zauscher

Beilstein J. Nanotechnol. 2012, 3, 397–403, doi:10.3762/bjnano.3.46

Graphical Abstract
  • nanoscale, by changing the sphere diameter of the colloid mask. Spherical particles are commercially available with a wide range of sizes and types, or can be synthesized, e.g., by emulsion polymerization for polymer latex spheres or by controlled precipitation for inorganic oxides [12]. Patterned polymer
PDF
Album
Full Research Paper
Published 15 May 2012

Platinum nanoparticles from size adjusted functional colloidal particles generated by a seeded emulsion polymerization process

  • Nicolas Vogel,
  • Ulrich Ziener,
  • Achim Manzke,
  • Alfred Plettl,
  • Paul Ziemann,
  • Johannes Biskupek,
  • Clemens K. Weiss and
  • Katharina Landfester

Beilstein J. Nanotechnol. 2011, 2, 459–472, doi:10.3762/bjnano.2.50

Graphical Abstract
  • , Germany Department of Solid State Physics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany Central Facility of Electron Microscopy, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany 10.3762/bjnano.2.50 Abstract The benefits of miniemulsion and emulsion polymerization are
  • combined in a seeded emulsion polymerization process with functional seed particles synthesized by miniemulsion polymerization. A systematic study on the influence of different reaction parameters on the reaction pathway is conducted, including variations of the amount of monomer fed, the ratio of
  • initiator to monomer and the choice of surfactant and composition of the continuous phase. Critical parameters affecting the control of the reaction are determined. If carefully controlled, the seeded emulsion polymerization with functional seed particles yields monodisperse particles with adjustable size
PDF
Album
Video
Full Research Paper
Published 18 Aug 2011
Other Beilstein-Institut Open Science Activities